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The analytic solution of the mean spherical approximation (MSA) for a multi- 
component mixture of hard ions and hard dipoles with arbitrary valences and 
sizes of particles in a uniform neutralizing background is found. Expressions for 
the pair correlation functions and thermodynamics in the MSA are obtained. 
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1. I N T R O D U C T I O N  

The development of the statistical theory of ion-molecular systems is 
stimulated by the necessity to develop the microscopic theory of electrolyte 
solutions, which has to be grounded on the explicit consideration of ion- 
molecular and intermolecular interactions besides the ion-ion ones. An 
explicit allowance for the molecular solvent results in new possibilities to 
describe and interpret on a quantitative level the solvation and other effects 
appearing due to the liquid polar solvent influence. (1-3) 

The simplest model for the electrolyte solution within the ion- 
molecular approach is the ion~lipole model, consisting of charged hard 
spheres (ions) and hard spheres possessing dipole moments (molecules). 
It has been investigated recently within the hypernetted chain approxi- 
mation, (4'5) the modified Poisson-Boltzmann equation, (6'7) and the mean 
spherical approximation (MSA). (8-16) 
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The MSA introduced by Lebowitz and Percus (~7) reduces to the 
solution of the Ornstein-Zernike (OZ) integral equations 

M 
hij(X1, X2) -~ cij(X1, X2) -I- E pilf dX3 hu,(X1, X3) ci, j(X3, X2) (1) 

il-- 1 

supplemented by the closure for the total correlation functions (TCF) 
ho.(X1, X2) = go.(X1, X2) - l and the direct correlation functions (DCF) 
cij(Xt, X2), where 

hij(X1, X2) = - 1 ,  /"12 < ~ = �89 + aj) (2) 

Ci j (X l ,  X2) = - j ~ U q ( X l ,  X2) , r12 > 0"/] (3) 

where g~(X1, X=) are the pair distribution functions (PDF); Uij(X1, )(2) 
are the electrostatic interaction pair potentials; fl = 1/kB T is the Boltzmann 
thermal factor; pi = N~/V is the number density of species i (i = 1 ..... M); M 
is the number of species in the mixture; XI = (rl, f21) denotes the set of 
coordinates of particle 1; f2~ is the set of Euler angles necessary to define 
the orientation of the molecule; r~2 is the interparticle distance; and o~ 
denotes the size of a particle of species i. 

If one considers the hard sphere model with long-range interactions 
Ugj(X1, X2), then the relation (2) is exact, and Eq. (3), being approximate, 
provides the correct asymptotics of the DCF at r12 --+ o0. 

The MSA can be solved analytically for several models and leads to 
relatively simple and qualitatively correct results if compared with the more 
accurate approximations and the computer simulation. Moreover, the 
MSA results can be improved either within an optimized cluster 
expansion ~1'18) or by introduction of the short-range terms into the DCF 
within the generalized mean spherical approximation. (2'~9'2~ 

The analytical solution of the MSA for charged hard spheres of equal 
sizes has been obtained by Waisman and Lebowitz (=1) and for multicom- 
ponent ionic systems with arbitrary charge and size of ions by Blum and 
Hcye. (22'23) In the case of dipole hard spheres the MSA solution was given 
by Wertheim. (=4) 

The simplest ion-dipole model is the mixture of particles of equal 
sizes, which has been solved analytically in the MSA by Blum (8) and 
independently by Adelman and Deutch. (9) The analytical expressions for 
the TCF and thermodynamics for this model were given in refs. 10-12. For 
the more general case of multicomponent ion-dipole system with arbitrary 
sizes of particles and arbitrary valences of ions the MSA solution has been 
considered in refs. 13-16. For the solution a Baxter factorized version ~27) of 
the OZ equations and the technique of Blum and co-workers (25'26) was 
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used. In refs. 15 and 16 the general expressions for the Baxter-Wertheim 
(BW) factor correlation functions were obtained and a method for the 
calculation of the TCF was proposed. 

Here we aim to generalize the results of refs. 13-16 for an ion~tipole 
system in a uniform neutralizing background. This model was proposed as 
a reference system to describe the structural properties of metal-polar 
liquid solutions. (29) These are the metal-ammonia solutions (3~ in par- 
ticular. In the model, screening and aggregation due to the metallic elec- 
trons are neglected. The considered solution is the generalization of the 
MSA solution for charged hard spheres in a neutralizing background, (31-33) 
which has been used to describe the structural and thermodynamic proper- 
ties of liquid metals (34'3s) and metal-salt solutions. (36'37) 

2. G E N E R A L  M E T H O D  OF S O L U T I O N  

The considered model consists of hard spheres with charges eZi,  
densities p,., and diameters ai of sort i ( I~<i~<M-1)  and one sort of 
hard sphere with point dipole p,, density Ps, and diameter as. Unlike in 
refs. 13-16, the M-component ion~lipole system is embedded in a uniform 
neutralizing background of density 

M 
P~o = Z piZ, (4) 

i=1 

similar to the model considered already in ref. 29. Here Z, = 0. 
The method for solving the MSA problem is similar to the case of the 

electroneutral ion~dipole model. (13 16) 
The TCF and DCF are presented in the orientation-invariant 

form(25, 26) 

h~(Xl X2)=  Z m~ , h o (F12) ~0~0nl(~-21, 0 2 ,  ~'~r12) 

. . . .  ' (5) 
C0(J[rl X-2) = ~ m n l  m n l  

, C i j  (r12) ~000 (O1, 0 2 ,  ~'2r,2 ) 
m,n,l 

where the linear symmetry of the dipoles has been taken into account; O1, 
02, and Or~2 are, respectively, the Euler angles specifying the orientation 
with respect to an arbitrary set of axes of molecules 1 and 2 and of the 
vector r12 joining their centers of mass and 

~0g'o~'(O1, 02, Or)= [(2m + 1)(2n + 1)31/2 
,u, v, 2 

• DoL(~1) D~(02) Dlo2(Or) 

822/54/3-4-10 
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The standard notations for the Wigner 3 - j  symbols and generalized 
spherical harmonics have been applied. 

After integration by orientations and transition to the orientation 
frame, respectively, to the axis connecting the centers of masses of the 
particles, Eqs. (1) reduce to the equations in Fourier space 

M 1 
mtl ~ m n  H~.~j(k) - C~,~j(k) ~, ~ ( -  ~" ~"~ ~ ,n  Ck~ = 1) p,,Hz.~(k ) ..,,,j._. (6) 

i i = 1  n l = O  

where 

--too ff  H;.,o.(k ) = 

~ m n  fO t~ C~.,o.(k) = 

d r  ikr m n  - ikr n m  [e J;.o.(r)+e J;.ji(r)] 

d r  ikr m n  - ikr n m  [e S;,.ij(r) +e Szji(r)] 

(7) 

Here the functions J~m~(r) and S;m~(r) can be represented through the 
coefficients in Eqs. (5), 

(-:) "" ~ h~ (t) Jz~(r)  = 27r(- 1);" - 2  0 dttPt  mnl 

Szu(r)=21r(--1)~ 2 --2 dttPi  %. (t) 
l 

(8) 

where the Pt(r/t) are the Legendre polynomials. The derivatives of the 
functions (8) are 

J~,~(r) ( _  1);~ 21rrH~,u(r ) m n  = (__ 1)~ 27rr Hi j,~.t(r) 
l 2 - 2  

S ~ ( r )  = ( -  1) ~ 2zcrC;m~(r) = ( -  1) ~ 21rr - 2  Cij (r) 

(9) 

where the new functions mnt ,~nt rant H o. (r) and C~ (r) relate to the initial ones hij (r) 
and m,t Cij (r) through the transformation (2'13) 

m n l  m -~ - hij (r) H o ( r ) -  m,l 

C~n'(r) = c~"'(r) - !  fr ~ 

'~t) m., dt Pt h U (t) 

eu (t) 
( l o )  
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and vice versa 

mnl I I 0" @)H~; (t) H o. (r) dt tP~ m~l h o ( r )=  mnl - - - ~  

ci; (r) = C~nt(r) - dt tP~ mnl 

(11) 

In accordance with the MSA closure (2), (3): 

000 mnl (12) - h ~  ( r )  0 i f  m o r  n 4: O, o'ij hi; ( r )=  1, = r <  

1 
mnl mnl r> (13) cij ( r ) = - f l u  O. rl+l , o'q 

where 

mnl--(__l)mDm [ (2l+1)! ],/2 u~ - pmp2 (14) 

and pm is the linear multipole moment of order m. 
In the ion-dipole case considered, the indices rn and n equal zero or 

unity and the set of equations (6) decouples into two independent 
equations for 2 = 0 and 2 = 1, respectively, 

[I + x/-p �9 Irlo(k) �9 x//-p] �9 [I - ,,/~ �9 ~o(k) �9 x//-p] = I (15) 

[1 + ps /~ l~(k ) ]  E1 -11 - p ~ C 1 . , ~ ( k ) ] =  l (16) 

where I is the unit matrix; p is the ( M +  1)-order diagonal matrix of the 
number densities of the ions and the solvent (PM+ 1 = P,); ~lo(k) and ~o(k) 
are the square matrices of order M +  1; and the asterisk denotes the 
multiplication of two matrices. 

Equation (16) has a form similar to the one-component dipole system 
and reduces to the Percus-Yevick (PY) equation for hard spheres with 
effective density q = -b2/12, where 

Thus, (24) 

hs, (r) _ 3 67z f~ 112 
b 2 ~ - 3 T 1 1 - p s 1 7  s ~ |  d r  (17) [ 3 s ~  ss r 

43o o 

C l , , s ( r ) -  c U  r, - 

(18) 
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where h(2PV)(r) and c(2PY)(r) are the correlation functions of the one- 
component hard sphere model in the PY approximation. In order to solve 
Eqs. (15), one can apply the BW method, (27"28) which leads to the represen- 
tation 

I - ~ , ~ 2 ( k ) , v / p = O ( k ) , O r ( - k )  (19) 

[I  + x/P * I~(k) �9 x/~]  * 0 (k )  = 0 r ( - k )  -1 (20) 

where for simplicity the indices zero in the functions Hom}(k) and Com}(k ), 
which both correspond to the case 2 = 0. are omitted; T indicates matrix 
transpose. 

The closure condition on the functions (8) can be written in matrix 
form as 

oo 2 ] ,, [(Jq + ~zr )M.M tt~ kais ]M, 1 
J ( ' )  = l (rlo~.x 11 + H.2, , r < a o. 

I_ t ~  "I1,M (Iss Jss �9 )1,1 (21) 

~(4rcfle2ZiZj ~ ~  ( +  fleZ, p~) 1 
\ Z#  JM, M 2~3 / M , I  >(7; 0 

- 4 ~  , r ="L (-~fleZjP=),,M ,0),., 

where J(r) and S(r) are ( M +  1)-order matrices. The first index in the 
matrix element denotes the number of rows and the second denotes the 
number of columns of the corresponding submatrix. To provide the 
correctness of calculations one assumes that the Coulomb potential has 
been replaced by the potential [exp(-•r)]/r with the limit # - o 0  in the 
final results. We have introduced the following notations: 

oo f ?  ooo lo 2__~__~ fo~ hlO,(r) rh,j (r), jo /=  , , ,  J ~j = 27r dr = dr 
(22) 

I;: l 7~ 112 I~J = 2 dr rh~~ + dr rh,= (r) 

By analyzing Eq. (19) taking account of the closure for S(r), one represents 
the functions Q~'(k) as (13) 

--m . . . . .  qij (r)eikr--Ao dreUk-l')r (23) Qu (k) -  6ij (pipj)l/2 ~o . . . .  
qi 

where q ~ ' ( r ) = 0  at r>(rgj; 2 j i= (%-a i ) / 2 ;  5~"=3ijfm.; 5 u is the 
Kronecker delta function. 
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Performing the inverse Fourier transform of Eqs. (19) and (20), we 
obtain 

M 1 

S ~ ( r ) =  - Q ~ n ( r )  O ( r - ) v ~ ) - Q ~ T ( - r  ) O ( - r - - 2 ~ ) +  ~ ~ p,, 
i I = I n I = 0 

x ~ A ~ A n n  ~ exp(--#r) + dt q.~ln'(t) q~,'(t - r) ~ [a i i  I , a j i  I + r ]  

- -  m n l  dt Ajn7 t ~ril, dt qiil (t) - A~ ~' 
2 i l i ' ~ i l y + r ]  tl I [ ) i l j ' ) ~ i l i - - r ]  -i j r  I x z j  

mn ' ~  r - t  Oem(t)  Jo (r) = Pil dt J.l  ( ) ~ , , J . .  
i I = 1 n l  = 0 "~Jil 

n l m  n l n  m n  + dt J~,~ ( t -  r) QaJ (t) + Qo (r) 

(24) 

(25) 

where in the lower ranges of integration the maximum number has to be 
chosen and in the upper ranges the minimum; O(r) is the Heaviside 
function. 

We get from Eqs. (24) relations obtained previously in ref. 13: 

M 1 

4nfleZZsZJ = E E o. Amn'A'~" W l [  II 1 - - j l  1 
i 1 = 1  n l ~ O  

4~ M i 
~ f l e Z ,  P. = A ~  2 2 on, ,n, - Pil A iil  Ksil 

i I = 1 n 1 = 0 

(26) 

where 

K q n  ~ f a q  
& 

The first of Eqs. (26) provides that 

d r q ~ ( r )  (27) 

AT" = Z~a~ (28) 

From Eqs. (25), taking account of the closure (21), it follows that 
q~n(r) must be a polynomial of the third degree and can be represented in a 
form providing the continuity of the BW functions at r = au, 

q~n(r) = (r - ao. ) qb'~" + �89 - o-o.) 2 q'ij mn + l(r  - o-~)3 q~,m. (29) 
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The coefficients of q~j"(r) can be found by a method given in ref. 13: 

I 27z ~2 
('-~'aij+'f'~ ~2 0"i O'j) 

q~mn = M,M 

( O ) I , M  

_~ V(--aO)--,M+1] 
+ k (al)l ,g+, j * a  

E / M , M  

1 
+ (-~ Yo,j) 

\ .,a / 1 ,  M 

(O)M, 1 1 
(0)1,1 

2 1 2 1 
(30) 

qj,-- = I /2r~ rc 2 \ 1 

( O ) I , M  (0)1 ,1  

+ 2A D \ A D Jg, l 

\p:~,~6 D/1,I 

/ M , M +  1 * a 

M * 62 
i=1  / 1 , M + I  

+ (31) 

..... M + I ] , .  
q'J [_ (0)1,M+1 J 

(32) 

where 

M b2 ~3 
~m = E Pi(fTi)m; f13x2 m= 1 -t 3 X (--2) m' YO =~6 

i=1  

Da = PiJ l~  + "~ Ps PiffiVi 
i=1  i l 
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o2 ~ 
D = 1 + # p~ pia2iv2 i 

i = l  

M M 

PM = E PiGi "/[/t'i; Pv = E Pi 62F' 
i - 1  i = 1  

7C 7Z 
~=v~+~P~o~; z~* =z, -~p~o~ 

(33) 

(34) 

The first terms in Eqs. (30) and (31) correspond to the coefficients of the 
BW functions for the model of hard spheres with arbitrary sizes. The 
elements of the matrix a are given by a7'3~". The a m can be found from the 
derivative of Eqs. (24) at r =  0, ~ 

aO 2 ( Z .  j/4 ~ 2) = D~,,~----~ ~ P..o, (35) 

M M 

1 = ~  E p,z*v, +*~ E a: D o j : ,  Ooj=l pjajv+.//gj (36) 

From the condition which comes from Eqs. (8) and (24) and symmetry of 
Com~(r) 

q~"(2je) - A~" = q~7(2ij) -- A~ m (37) 

one obtains the set of nonlinear equations for the parameters J//4 and vi 

2 M 2 

Doa ~ = 2Fdgi % % + T Ps(rli + raiv,) E PsaJvJ~-- ~ 6  psaiv'Bm 
j = l  (38) 

M 

Ors Da o ~. PjCrjvj.///4 JA~,.a~D = yoCTiVi + asni-~- T 
j = l  

where the screening parameter F and ion-dipole interaction parameter B 1~ 
are introduced. Equations (38) are similar to the ones given in ref. 14 if 
Zj ~ Z*. The set of equations (38), as in refs. 13-16, has to be supplemen- 
ted by three equations which couple F, B 1~ and b2 with the parameters of 
ion-ion, ion-dipole, and dipole~lipole interactions, 

eo 2 = 4rtfl e2, e~ = ~o%, c~ = (4rc/3) fip~ (39) 

Two of them are Eqs. (26) supplemented by Eqs. (28) and the third is 
defined by the closure (13) for the c~2(r) and has the form 

B~ M 
- -  psKss ) + Ps E pi(Ksi ) ( 4 0 )  p4 + p s ~ = ( l _  ~, ~ lo 

i = 1  
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Defining the constants K~ n by Eqs. (27), taking account of Eqs. (29), the 
necessary set of equations has the form 

D 
GJ 

M 1 

%2= Z Z Pc(am) 2 
i = l  m = O  

2 M 

~o(~ 2 _ c~0AlO)f16 D = ~ ~= piaOl.]i ..]_ 1 as Yo 
i 1 

2 M 
f f s  

+ P~[(a2-aoA'~ fl6D]2=--~ P, ~ P,tl2~ + Yg 
i = I  

(41) 

where 

3~ ,  2 M 
AlO= a~ PiZi, vi+ a s 

i = 1  i = 1  

Therefore, similarly to the case of an ionic system in a neutralizing 
background, (32'33) the equations for the parameters F, B 1~ and b2 coincide 
with the corresponding set of equations for the electroneutral ion~tipole 
model. (1~16~ The presence of a neutralizing background leads to the renor- 
malization of the valences according to Eqs. (34) and the value of the 
dipole moment does not change. The presence of the neutralizing 
background results in the appearance of a cubic term in the polynomials 

m n  F n m n  qo ( ) and the additional term np~aia) in the coefficients qij for the BW 
factor correlation functions. 

In the absence of a neutralizing background the obtained expressions 
are reduced to the previous results for the electroneutral ion~lipole 
model (1~ as well as in the absence of dipoles (Ps = 0) to the results for 
an ionic system in a neutralizing background. TM 33) In the latter case, 
assuming that b2=0, B~~ and vj=0, we find from Eqs. (38) 

P~=,=,X p,o-,.~=,=, iu + .= l+r~j/ 

and then in accordance with Eqs. (36) and (41) obtain the equation for the 
definition of the screening parameter 

I Z* - (rc/2d) PMO2] 2 

i = 1  

(42) 

which coincides with a similar equation given in ref. 32. 
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3. THE T O T A L  A N D  DIRECT PAIR 
C O R R E L A T I O N  F U N C T I O N S  

The functions H~"(r) in accordance with Eqs. (12) obey the closure, 
which can be rewritten as 

= ( - - 1 ) M ' M  I - 2 - - ' ~ y ( V i - - g j ~ = l P j f f J V j ) ] M ,  1 

7z g 3 -- b2 ' H(r, i_~_~(vj__ ~ ~ PiCriv~)~ (--Z--ZS-3) I 
i=1 /A1,M \7~psa~/1,1_..I 

Let us introduce the functions 

r<a• 

(43) 

G~"(r) = H~"(r) - E~jn(r) (44) 

where E~jn(r) are functions equal to H~n(r) in the hard core region. By the 
differentiation of Eqs. (25), similarly to refs. 10 and 14, we arrive at the 
following equations for G~n(r): 

27zr[ G~n(r ) + E~(r )  ] + d q~(r) 

M 1 

= E E PhJm?x( O) Z`la; 
il = 1 nl = 0 

+21t,~ 21 = ,1=o Pil Z ,~a )  dtt[G~(',(t)+Em"~(t)], 

+.f~ t)} (45) 
~ 2j'l. 

With the account of the closure for G~'"(r), 

G~"(r) = O, r < % (46) 

the set of convolution integral equations can be obtained 

M 1 

rG~"(r)- ~ ~ Pi, dt ( r -  t) Gm"l(r - t) On~ntt~ 
il = 1 nl = 0 )~Jil 1 1[ 

=--2re qbm" + (r -- r ) qij . . . . . .  -e-~l (r -- r qq ..... J] (47) 
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By a Laplace transformation, we arrive at the linear algebraic equations for 
~mn . G!~ (s). 

M 1 

i 1 = 1  n l = 0  

exp ( - sou )  
. . . . .  + sq~ + s q~j ) 2/rS 3 (qo" . . . .  2 . . . .  (48) 

where ~ nan QO" (S) are the Laplace transforms of the BW functions: 

I . . . . . . .  Q~j (s)=eS~O (p l (Oi )  qo. " t ' -q)2(ai)qo.  "nt-(p3(Gi) q ;  ' m n -  a~ 

~0m(O)=S-na-~ [ ~ (--SG)~ ] k=0 k! exp(-s~r) , m = 0 ,  1,2, 3 (49) 

fo Gij'na"(s) = dr r G ~ ( r )  e x p ( - s r )  

The solution of Eqs. (48) reduces in the general case to the evaluation of 
the inverse matrix W-~, where the matrix W consists of the elements 

mn W~" = 6~" - PtQ~j (s) (50) 

In order to do this, we mention that the coefficients of q~"(r) given by 
Eqs. (30)-(32) can be rewritten as 

. . . .  6 m d j  d i 6~ + r psOs q i2 -- "~ -- 723_2 V i V) 

+ ( D a f m f ~ - - - ~  

2 
~m n n a s p ~ p ~ D m p ~ + u ~ f  ~ 

2A D 

~mr q~,m, = 2zp~o i 

(51) 

where we used the inverted caret to denote an (M + 1)-component vector. 
The components of the vectors are given by 

/~m = 1 -- ~5,na, ,~na = ,~ TM v ,, 
~ i  V s i  , di = O i ~ i  ' 

m 2y02 ~m 
P7 = ~htJi + pso ,  vi 

ft m= ~ M+~zp~oi  [)i + pjvj Z * - ~  
j = l  

~ m m  i n a m 

b2oj ~ )  ~m 

2r s fl 6 

(52) 
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Then the matrix W can be represented as the Jacobi matrix 

with the following components of the vectors: 

aT--~p,  q,o(~/) + q~,(o-,) /;7 

ei =pi[~,7~p2(ai)+ D~pl(ai) fm(6m__~)__Z_Z~sf /;m I A vm + T  pqg(~m 

~m Ps b2 ~m g as zi =--.~ (P2(G,) v~ ---f-~G~psP,,/;" 7 --Tp~q~(a,) :~ (54) 

c , - 5  p,e~(o,)/;7 +~2,~7 

2 m __ ~m w, 2 ~ol(~r~) v, 
ffs 

The following procedure to calculate W ~ is given in the Appendix. Mul- 
tiplying the set (48) by the inverse matrix W -1, we obtain the following 
expression: 

Gij (s) exp(-so-ij) /;m gS ~Im\[-1--(d /;n 
2~s~ ' + 7  ' )L~-:~ ( , +e ,#  + ~,~;/ 
(e/;) 

(dy + ee/;7 + ~py)]  +Do(s) 
~z2s dm \ 

F (M) x LDo(S)@+efl;~+:~p~) 

1-(a/;)(3~'+ga/;;+YaP~') + -D--~(--~ p;+e,h; -r /)o(S-------)- 

(1-(~p) [~,~ + ~  p,]) 
+\  DT(s) ' 

"m 1 x[um+sDt~(vi  ---~) fi~m ..F72rC p~/;m] 

p~ ~1 
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where 
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1 
~ - DT(S) [(1 -- ~/~)(d#) + (d/~)(2#)] (56) 

1 
,.~ = [(1 - ~/~)(%i) + (%/~)(0#)] (57) 

DT(S) 

In Eqs. (55) we have used the following definitions, which are introduced in 
the Appendix: 

[if = f 7 + [(1 - ia)( ~f  ) + (ad)(ef)]  /;m 
Do(s) 

dr . ( ~ f ) v m  
+ [(1 -- a/;)(ey) + (e/;)(~f)] D - - ~  + ~ v, 

= ~7 + [(I - ~d)(~) + (~3)(~#)] ~/;7 P7 

+ [(1 - ~/ ; ) (~)  + (~/;)(a~)] D---o-~(s) 3 f+  i (~)-  ~ ~m 

Do(s) = (1 - ~;)(1 - 53) -- (dd)(/~() 

D r ( s  ) = (1 - 0h)(1 - %/~) - (~/~)(~) 

(~/~) is the product  

M 1 

(a/;)= y~ y, am/;m (58) 
i = 1  m = 0  

Applying the symmetry condit ion of the invariant expansion coefficients of 
the T C F  m,t h u (r), which leads to 

Am" a~, (S) (59) Go " ( S ) = ( _ _ l ) m + ,  %m 

one can rewrite Eqs. (55) in a more compact  form, O6'29) 

Am" - -  F~ " l  - m  ~. 
Giy (s) [~'fl~7 ~ 2ns ( D r ( s )  

a o. ( s ) -  "HS e x p ( _ s a 0  ) ~ m _  1/2 LD p't - o h ) p ,  p) 

2 _~m~ ~ (60) 
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where ~ Hs G~ (s) are the Laplace transforms of the PDF of the hard spheres 
with different sizes in the PY approximation. 

The explicit dependence of ~"" Gv (s) on the background density is 
involved in the vector 87 only, 

where (8o), is the vector corresponding to the same vector for the electro- 
neutral ion-dipole system (~5'16) with the substitution of Zj by Z*. 

It is shown in ref. 29 that 

(8~) = (8"~), (@) = (~*/~) (61) 

Therefore, the presence of a background does not change the analytical 
expression for Gm'fs~ which was obtained in refs. 15 and 16. However, it is - - / j  ~ ! 

necessary to replace the valence Zj by Z* everywhere in the calculation of 
all the coefficients. This effective value Z* defines the change of the PDF in 
the presence of a neutralizing background. 

The obtained results generalize the ones given previously for the 
following limiting cases: (1) the electroneutral ion-dipole system, i.e., 
p~o=0; (2)the mixture of charged hard spheres in a neutralizing 
background. 

In the former, assuming p~o=0, one obtains Z*-=Zj, and then 
Eq. (60) is reduced to the corresponding result given in refs. 15 and 16. 

In the second case one has to assume Ps=0- Then the ( M +  1)th 
element of all vectors equals zero. It follows then that ~m = ~m = 3~ ~ = 0 and 

D~-(s) = 1 - (8~)= 1 - (sf) 
ADT(S) 
Do(S) 

(62) 

where 

+ + 

The expression for the Laplace transform of the ion-ion PDF can be 
written as 

d (s) - . s  =G v (s) exp(-sao.) D~ [zo[~o (63) 
4ns Dr(s) 
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If we introduce the notations 

ij= Do(s) f ~ +-~ (6~ P~1 + 63P~0) OJ+s~ (81P~o + 262P~) 

M 

P,po= E Piaif~176 
i=1 

M 

Pq~l = E pi iO(~oI(O' I )  
i = l  

6~ = 1 A P"~176 
i=1 

6~ = 1 + ~ -  p~G~q~o(~,) 
i=1  

i = l  

D*(s) =Dr(s )  Do(s) 

(64) 

the expression (63) can be rewritten in the form 

%o "Hs e x p ( - s a ~ ) ( F ' ~  2 ii{j 
Gis(s)= [ j (65) o o. (s) ~s ~ z)*(~) 

which coincides with the result obtained in ref. 33 for the pure ionic case, 
and in the absence of the background (p~, = 0) reduces to the case of a 
multicomponent electroneutral ionic system. ~23) 

Replacing in (60) the Laplace transform by the Fourier transform 
yields 

m n  a m n  ~ m n  (66) 

Inverting Eqs. (66) to r space, the functions D~"(r) are 

O ~ n  _ m n  (r) - H U (r), m = n 
m n  = G o. (r), m # n 

(67) 

Having in mind Eqs. (5) and (11), the TCFs of the asymmetric ion~lipole 
model in the neutralizing background in the MSA are given by 
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hu(X1 ,  )(2)= D~(r,2), i ~< i , j < ~ M -  1 

h , s ( X , , X z ) = D O O ( r 1 2 ) + { m  r 1 f0"12 } Dis (12 )  - (r12)--'----5 dt tD~ cos 0 2 

hss(X1, X2) : O~(rl2 ) + {Osll(r12) -- 2H]~ss(r12)} cos ~12 (68) 

{D~)(r12 ) +  1, + H,,ss(qD 

3 V,2 2 li t (rT~)3jo d t t  [D. . ( t )  

• (3 cos ~91 cos ~92 - cos t.ql2 ) 

where ~1 denotes the orientation of the dipole moment of molecule 1 and 
912 is the angle between dipole moments of molecules 1 and 2. 

Finally, we shall present expressions for the coefficients of the DCF 
C~' ( r )  given in Eqs. (9). To find them, it is necessary to differentiate 
Eqs. (24). We choose aj > cr i for concreteness. When 0 ~< r ~< 2ji, one obtains 

~ 7 -- 2urC~ ' ( r )  = qj~'~ - (r + a o) qj;,m + 2 (r + ff ij) 2 qj;,n,, _ T o r  

- Pii dt a m " f i t ] -  
,, = 1 . ,  = o ,,, -~"' " " d( t  - r) q)]7~(t - r) 

mnl nnl } + A <  qj.~ ( 2 ~ - r )  (69) 

and after substitution of Eqs. (29) for q~ ' ( r )  into Eqs. (69), 

1 
. . . . . . .  %0  q)~ - - ~  - 2 ~ z r C ~ ' ( r ) = q j ~ - ( r + a g ) q j ~  + - ~ ( r +  ,2 ..... Z ,  Z j  

- -  P i l  (r Jr- (~ifl') ,l I "l j ,  1 
il = 1 nl = 0 

1 (r + o-ij) 2 toni . . . .  1 ~_ ~ (r ~- ai j )  3 A toni A ii, qji~ iil q)et 1 
2 

1 6 2 F l t m n l g l t n n l  __ (r + 2ji) ,m,, .... , 
2- - i - l  ill "ljil Af- T qiii qjii 

if3 t/toni tnnl 
6 qii, qjil 
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I2 j + "4 + -~-"~ (r + 2ji) + -~-' (r + 2j/) 2 qii,'m"'qjil ..... 

"i . . . . .  1 '""' ' (r + 2j;) -ran1 .... 1 + -~  qill qji, + + -~ qiil qjia 

, .3 (r+.~:,)~] . . . .  ' . . . . .  1 
L 2 0 + - g - ( r + 2 j 3 + ' i 5  ~ q,i, qJh 

- '  r ).ji) qiil qjil L 3 0 +  24 ( + . . . . .  t . . . .  l 

' - '  r ).j~) ' ~.j,)~ + 7-2 + 30 ( + + --~ (r + q;'lr~"'q~;~ ""' (70) 

When 2:i ~< r ~< aij, after differentiation of Eqs. (24), one obtains 

-27~rCij (r) mn = -  q~"(r) P i l  -~tlt I \ l l J - -  , ' " / j r  I x - q  j :  

= nl = O  

f' ")j-r) + dt mnl ~ annt(t -- r] 
-1jr 1 ~,- 

-- ~ji 1 

"t- Aj~inllqiiT'()Lilj + r) -- A. . . IA. .~ ~ iil j i l  

and after substitution of Eqs. (29), 

1 c~o ~ 

"" . . . . . .  " q ~  - 2 
- 2rtrCij ( r )=  - q i j  - ( r - a a )  qij - -~  ( r - a o . )  2 . . . . . .  Z i Z j  

+ ~ ~ P i , { ( r - " i J )  a'~"'A'~"'-,.1 J,1 
i 1 = 1  n 1 = 0  

+ 5  (r -- o/j) 2 cl((mnaAr"nl-..l J,l + (r -- .0)  3 q;;'"~A~i~l 

[ 1 ]qii l  q)e, + . j ( r _ a i j ) + _ ~ ( r _ a i j ) 2  ,m.l '..1 

(r - "o)  - 5 (r - . u )  ~ (r + ,~:~) 

1 
] d]iil q j i t  __~G)(r_.ij)2 A ,ran, .... , 
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I1 0-j ] "mnl tmnl + g ( r -  6~) 3 -[- "~ ( r -  ao) 2 qiil qji, 

I 1 ~J ] 
1 4 1 

~ - 5  
+ -~ (r -- (r -- ao) 3 (r + 2ji) 

0"3 
frO)] qiil qjit + ~ ( r _  aij)2 (r + 2ji)2 + _~ ( r _  'm,,l ..... , 

+[8  , 1 (r - ~ )  - g  (r - Go.) ~ (r + ,~j,) 

(r -- (~ij) . . . .  1 .... 1 qiil qjil 4 

+ (r- -a i j )5- -g(r- -0- i j )4(r+)~j i )  

1 a)  ] . . . .  , ..... , 
+ ~ (r - a/j)3 (r + 2ji) 2 -[- --~ (r -- o~) 2 qii, qjit 

1 4 + [ l ( r - - ~ u ) 5 - - - ~ ( r - - 0 - o . )  (r + 2si) 

0"2 ( r _  rr..]3] a"(mn'(t"nnt 
12 -y ,  ]-,,,~ -lj,~ 

1 5 
-]-I~--- ~ (r--0-ij)6--~-() (r--aO) (r + )Vi) 

-'}- ~'~ (Y -- O'6)4 (r -]- ,~ji)2 + ~ q;ilm"'q'j;~ ""' (71) 

So, the functions C~"(r) are given for 0 ~< r ~< 2ji by Eqs. (70), for 2ji ~< r ~< 0-,j 
by Eqs. (71), and for r > a~j in accordance with (21). 

Then the D C F  c~(X1, X2) as well as the TCF  are given by expressions 
(5) and (11). 

4. T H E R M O D Y N A M I C  PROPERTIES AND 
DIELECTRIC CONSTANT 

The thermodynamic properties can be calculated by three independent 
methods starting from the internal energy, from the virial equation of state, 

822/54/3-4-11 



726 Golovko and Protsykevich 

or from the compressibility equation. (~'2) However, due to the thermo- 
dynamic non-self-consistancy of the MSA all three lead to different results. 
The best are the results based on the internal energy calculations. Hcye 
and Stell {38) have developed a general method making it possible to obtain 
the excess Helmholtz free energy, the excess chemical potentials, the excess 
free enthalpy (or Gibbs free energy), and the equation of state in terms of 
interaction parameters. This scheme has been applied for the electroneutrat 
ion-dipole model by Blum and Wei. (13'14) 

We present an analytic formulation for the excess thermodynamic 
properties which is based on the analytic solution of the MSA for the 
asymmetric ion-dipole model in a neutralizing background. 

By definition, ~ the electrostatic part of the internal energy for the 
ith component is given by 

ET~ m (__ 1)'lOgO 2~r,SPig21 Uij (r) fl ---~-= PJ 2 2/+ 1 dr r2g~"i(r) m,, 
'= m,n,l 

(72) 

Taking account of Eqs. (22), the excess internal energy can be written 

~ E~'= O~ Z.R" o~ ~ M ) 
- -  - - ' -~  p s z i ~ 6 ( V i - -  E pj~r3vj ' 
Ni 4rt - - ' - '  \ 6j=1 

E: ~ ~ B~o_ ~ b~ 
fl -~, = 4r~ art a 3 

i=  1,..., M-- 1 (73) 

(74) 

Then the excess internal energy of the system is given by 

Eel = ~162 Z~ PiZiBi-- ~ lo b2 
3 fl V 4~z 2r~ psB 2~ rr s 

i = 1  

We have applied the following notations in Eqs. (73)-(75): 

K M 3 ~ ~ 2 ~ 2  

B, = ~,-~j=Z i pj~ ~ - ~  z2-~5 P ~ '  + ~ p~ r 

~ = -  ( ~ -  
] ffi j = l  

where )~m = Z ~  l piZia~- 
In the limiting case Ps = O, one obtains 

(75) 

(76) 

(77) 

2 TC 
~ ,  -- - r ~ -  ~ p ~ ,  - ~ PM~, (78) 
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and the expression (75) reduces to the result given by Parinello and Tosi (32) 
for a multicomponent ionic system in a neutralizing background: 

M ( Z ? ) 2  7"~ ~ piZ?ai 
Eel ~ --1" 2 P i -  PM 

fl V -4~  l + Fai 2A l + Fai i=1 i=1 

re2 P~ ~s} (79) 

The excess Helmholtz free energy can be given as (38) 

Fel E el 
~---77=fl - J - J ' - J "  (80) 
~ V I V 

where 

2n M ~ S" (-1) '  I~ dr rl tg~"'(r) dU~'t(r) 
J= --3-fl ~" PiPJm~zZl+ l Jo dr i=l j=l , , 

1 v 
- - -  0:2 -4o~21p,B1~ ps ~3,) (81) - 1 2 ~ (  Oi~=l piZiBi 

,~ v (-1) '  } 
Jt=~3t 2"=lM j = l  ~ P'pja}(mZ".,z2l+l,, [ g~'(a0-)'] 2 -  [g~S(a,y)]2 (82)  

1 M M gl 
Z ~R,000 Cij ( k -  O)} (83) J =~ ~ p,pj{c~ (k=O)- '~s - 

i = l j = l  

The contact values of the coefficients of the invariant expansion of the PDF 
mnl g,y (a~) are obtained from Eqs. (9), (11), (30), and (45): 

gOOO(ao.) = 1 [2naij ~2 
2=a-----7.~. ~ 7  + ~'3-~ r 2 a, a , 

De aOg_ as (84) 
2 ~ PstlitlJ 

- (yo 1 , 
gsi (ai,)= -&s  (a~,)= 2zai, \ D  

lOl mi ~1i + ~ Daas ai ) (85) 

g~~ = 2 x/-5 ha, P~ ~-a2s + (~12)2 2 D y2 

1 l +~ Oo(as) 2] (86) 

822/54/3-~-11" 
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g~j2(as) = 2 x /3  n G ~ 6 2  - -  1 +--~ YO P~ ~ + ~  / 

1 1 ] 
Dn(G)z j  (87) + 

The Fourier transforms of the coefficients of the invariant expansion of the 
DCF ~,~.t % (k) at k = 0  are given in accordance with Eqs.(69)-(71) as 
follows: 

~R 000[I~ __ ~R, O0 ~' ~,~=0)-Co,~j ( k = 0 )  (88) 

where ~R,00 _ Co,~/ ( k -  0) denotes the regular part of the functions -oo _ Co, e/(k-O ), i.e. 

Co, i j~R,O0 ( k - - O ) : ~ i m o ( k f o  ~2 (89) 

For the hard-sphere model in the PY approximation the contact values of 
the PDF and the Fourier transforms of the DCF at k = 0 are given by 

1 
g~S(a~2) = A + ~ 4 A  a o. ~2ffiffJ" (90) 

M 
~HS KHSK Hs (91) c// ( k = O ) =  ns Hs Kij - } - g j i  - -  Z Pil ii I fit 

i I = 1 

where 

K~ s '~ dr HS ~ 3 ~ ~2  
= q+/ ( r )=-~- -~  a i -~--~ 2A - zj  

The expression (83) for J" can be expressed through isothermal com- 
pressibilities as follows 

where 

j .  1 (~'gHs ~)  = ~  4o - (92) 

1 1 ~ ~R, OOO _ 
- - =  -- pipjc O. ( k -  O) 
Z ~ o i  l j = l  

1 1 n n 2 
z . s  = 7 + r r + 4-Y o 3 

(93) 

(94) 
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The electrostatic part of the chemical potentials is given by (38) for ions, 

el__ El  i 1 M 
_~jEI ~R 000 - -  Cij (k = 0 ) ]  (95)  fl~ti - f i - ~ i  pj[c~' (k=O) -as 

.= 

for dipoles, 

E el 1 M 
/~/lel = / ~  - -s  ~ j E I  p j  [-~sj0~. 0(k = 0 ) -  ~HS c,s (k=0) ]  (96) ,-r-s '- Ns  .= 

In the low ionic density region (Po = ~ 1 1  p,Z2i ~ O) the interaction 
parameters can be written in the form (one has to neglect the terms linear 
and higher order in Po) 

b2 ~ b(2 ~ (97) 

~/[i "+ Zi ( 1 ~176 2 ~ w  ai x/~o) (98) 

Y i ~ Zi ~ w  asf l6  "{- O'ifl3 (99 )  

o{ o 
B,--+ ~ ,  ~ - 2 x ~ w  Zi x~o  (100) 

where gw = (f122f13/f163)2 is the Wertheim dielectric constant. (24) Then the 
expression for the excess chemical potential of ions is 

~ w - 1  1 + ~ ~3) - 8= x//-~w x ~  o (101) 

where the first term corresponds to the Born expression and the second is 
the Debye one. 

When Po = O, we get the ionic solvation energy W~ l 

o z 1 
4rco-, ~w - 1  1 + ~//f13 ) (102) 

which coincides with ref. 39. The remaining part of the chemical potentials 
defines the electrostatic part of the activity coefficients 

el __ el el In 7, - fl]di - -  f l W i  (103) 

In the low-dipole-density region, b2~0,  and F reduces to the 
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corresponding value for ionic system in the neutralizing background 
(G = 0) .~32) The parameters D are 

where 

~~ ~ Jr L/j (104) 
vj = 1 + F2a~ o ,  + o--'-~ i = l  

1 
L~ = 6 U + ~LL [(1 - e~?) a~/;s + (e/;) a~c?j + (a~?) e~$j + (1 - a/;) efl~] 

D L = (1 - M~)(1 - gd) - (ad)(/~e) 

n 1 (  F~, 2 1 ) 
- -  f fs6i-[  P M ~ i  cti - 2A as + ai k 1 + F2a2 s Da  

Frr s 1 
G = - -  d/Z,. 

as + ai D~ 

dj 2 Fas 6s+Oj+FZo2sO j 
- 3 1 +  FZa 2pjZ*-; i ~ - ~ a  2s P~ J 

For the equal-ionic-size case the formula (104) is of much simpler form: 

~ =  ~o~ Zj 3 3 
1 +Faj as(FG) + (3aj+as)(Fas) 2 + 3(a~+G)(1 +FG) 

(lO5) 

The excess chemical potentials are, for ions, 

) fl~7' --' ~ z ,  p j ~ -  ~ (z2 + p ~ ) - ~  p ~  
O" i .= 

and for dipoles 

(106) 

fl/~l ~ flW~l_ ~~ B 1~ (107) 
4~fl6 

where W~ 1 is the solvation energy of the dipole molecules in an ionic 
solvent. 

The excess Gibbs free energy is given by 

G e l  el 

f l --~-=fl  ~ ~ .~, o E j, ,  pi~'i = p - -V - (108)  
i = 1  
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For the excess pressure we have from ref. 38 

fl pe~ = j + j ,  (109) 

Adelman's dielectric constant can be written as 

~ 1  2 4 2 + p~ ~ 2 ( / ~ , J / ~ )  (110)  

Finally, we note that the set of interaction parameters ~ ,  vj, F, B 1~ 
and b2 defining the MSA analytical solution is calculated by numerical 
methods (a standard multidimensional Newton-Raphson technique, for 
example). The choice of the set of initial values is important here. 
Depending on the thermodynamic state, either the equal-ionic-size case or 
the limit of low ionic or dipole concentration is taken as a starting point to 
iterate the interaction parameters. 

The numerical investigation of the considered model will be given 
elsewhere. 

A P P E N D I X .  T H E  I N V E R S E  M A T R I X  C A L C U L A T I O N  

In the inverse matrix calculation procedure for simplification we write 
(53) in the form 

tort  v m  n 
W i j m n m  Mij - e i  f ~  - ziVm y)~,, ( A 1 )  

where 

m / j  - -  0 ;  n - -  a ~ n ~ ;  vm "" "" TM ( A 2 )  m n  _ _  - -  di  d ~  - w i l ) j  

Then for the matrix inverse to M,~" one obtains 

1 v ~m n a/d~ (M-1),~" = 6~" +D---- ~ [(1 - c d )  a i t~ + ((/~) " ' "  

where 

Do(s) = (1 - ~/;)(1 - a3)  - (~3) ( / ;a )  ( A 4 )  

M 1 

(~t;) = Y~ F, ~,"/;7 .... (A51 
i = l  m = 0  
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ran ( ~ 1 1  1 ] m n  Multiplying W 0. by ,_._ ,~ , we get the expression 

to.ran = ( W  * M 1)t~-n = (~mjn - -  ~m[7'~ -- Z~"'p) TM (A6) 

1 
@' = f 7  + [(1 - 6d)(df) + (6dt)(?f) ]/~" Do(s) 

1 (~y')ra 
+ [(1 - 6/~)(0~) + (d/;)(6f)] [ l T ' ~ o ( S ) t - f z ~ v  ) (A7) 

p'~' = ;9 7 + [(1 - d8)(@) + (dd)(6p)3/~' D~(s) 

" O~(s)  (~) + [(1 - a/~)(~37) + ((/;)(dp)] d 7 + ~--Z--~ 6j~ (A8) 

and, correspondingly, for the inverse matrix 

1 (L 1)/~n = 6 .m-n -1- - -  ( ~ )  ~ m ' n  v - D r ( s )  [(1--ZP) 0m@+ ei py 

+ (1 - ~/~) ~7'/~ + (~/~) ~m@] (A9) 

where 

Dr(S) = (1 -- O~)(1 -- s -- (d/~)(E~) (A10) 

One then can find the inverse matrix by applying (A3) and (A9): 

(W 1 ) ~ . = ( M  Z , L  1)/~ n (Al l )  
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